Caffeine

Newborn use only

Alert	Caution v	vith dosing: Caffeir	ne citrate 2 mg = caffeine base 1 mg		
Indication	1. Treatment of apnoea of prematurity.				
	 Weaning from mechanical ventilation. 				
		Prevention of post-			
Action			e actions of adenosine at cell surface red	ceptors.	
			effort and regularisation of breathing p		
			atory drive and increased sensitivity of c	-	
	carbon di		, , ,	'	
	Increase i	n respiratory centr	e output, smooth muscle relaxation and	d cardiac output.	
	Improvement in the contractility of the diaphragm and hence increasing the force of				
	contraction and decreasing muscular fatigue.				
Drug type	Central ne	Central nervous system stimulant, respiratory stimulant.			
Trade name	Cafnea (ca	affeine citrate), Au	spman (Caffeine base)		
Presentation	Caffeine				
	Caffeine o	citrate oral 25 mg/5	5 mL solution		
	Caffeine b	base IV 50 mg/5 ml	_ ampoule		
	Caffeine b	base oral 10 mg/ml	_ solution		
Dose	Caffeine o	citrate_			
			••••		
		Loading dose	Maintenance dose	Post-Op apnoea	
			24 hours after loading dose	(single dose)	
	IV	20 mg/kg	10 mg/kg (range 5–20mg/kg) daily	10 mg/kg	
	Oral	20 mg/kg	10 mg/kg (range 5–20mg/kg) daily	10 mg/kg	
	Maintena	nce dose may be ir	ncreased or decreased as per the clinica	l need.	
	Caffeine b	haca			
		Jase			
			Maintenance dose	Post-Op apnoea	
		Loading dose	24 hours after loading dose	(single dose)	
	IV	10 mg/kg	5 mg/kg (range 2.5–10 mg/kg) daily	5 mg/kg	
	Oral	10 mg/kg	5 mg/kg (range 2.5–10 mg/kg) daily	5 mg/kg	
			ncreased or decreased as per the clinica		
Dose adjustment					
Therapeutic hypothermia	Safety no	t demonstrated.			
ECMO	Not applie				
Renal impairment			igh to specify dose adjustment, but cau	tion required in the	
	Current evidence is not enough to specify dose adjustment, but caution required in the context of renal impairment as caffeine is 86% renally excreted. Consider therapeutic drug				
	monitorin	-			
Hepatic impairment	No inform	-			
Maximum dose			e in trials varied between 20 and 80 mg	/kg.	
				. 0	
	Maintena	nce dose caffeine o	citrate in trials varied between 3 and 20	mg/kg/day. [1]	
Total cumulative dose					
Route	IV				
	Oral				
Preparation	ORAL SOLUTION				
	No dilution is required.				
	IV INFUSION				
	<u>Caffeine citrate</u>				
	Draw up 2 mL (40 mg) of caffeine citrate and add 3 mL sodium chloride 0.9% or glucose 5%				
		to make a final volume of 5 mL with a concentration of 8 mg/mL.			
	Caffeine base				

	Draw up 2 mL caffeine base (20 mg) and add 8 mL sodium chloride 0.9% or glucose 5% to
	make a final volume of 10 mL with a concentration of 2 mg/mL.
Administration	<u>IV</u> : Infuse
	 loading dose over at least 30 minutes
	maintenance over 10 minutes.
	ORAL: Solution may be administered without feeds, however consider giving with feeds to
	reduce gastric irritation.
Monitoring	Heart rate, number and severity of apnoea episodes and assess for agitation.
	Consider withholding dose if HR > 180 bpm.
	Cardiorespiratory monitoring should continue for at least 5-7 days after the cessation of
	caffeine treatment for apnoea.
	Therapeutic drug monitoring is usually not necessary. [2] Trough concentrations may be
	taken one hour before the next dose is due but should only be done if using high doses or
	toxicity is suspected. Monitoring of serum drug concentration should be determined on
	approximately day 5 of therapy.
	Standard caffeine dosing of a 20 mg/kg load followed by 5 mg/kg once daily results in serum
	concentrations of 5–20 mg/L (26-103 micromol/L).
	Supratherapeutic levels 20-60 mg/L (103 – 308 micromol/L) offer potential increased effect.
	Levels >60 mg/L (>308 micromol/L) are considered the toxic range. [3]
Contraindications	Contraindicated in infants with hypersensitivity to methylxanthines or citrate.
Precautions	Use with caution in infants with impaired renal or hepatic function, seizure disorders,
	cardiovascular disease or congenital heart disease.
Drug interactions	Fluconazole and verapamil may decrease caffeine elimination.
	Phenytoin may increase caffeine elimination.
	Caffeine antagonises the effects of benzodiazepines.
	Other methylxanthines (theophylline, aminophylline) should not be used concomitantly.
Adverse reactions	Arrhythmia (ventricular), flushing, tachycardia, vasodilatation, functional cardiac symptoms.
	Increased left ventricular output & increased stroke volume, hypotension.
	Agitation, irritability, restlessness, sleep disturbances, seizures (with toxic doses).
	May relax the lower oesophageal sphincter & increase gastric acid secretion leading to
	increased episodes of gastro-oesophageal reflux, gastritis, vomiting.
	Urticaria, alterations in serum glucose, diuresis, tachypnoea.
Compatibility	Fluids: Glucose 5%, Glucose 10%, Glucose 50% and sodium chloride 0.9%.
	Y-site: Dopamine, fentanyl, heparin, amino acid solutions and fat emulsions.
Incompatibility	Fluids: No information.
	Y-site: Aciclovir, frusemide, glyceryl trinitrate and ibuprofen lysine.
Stability	Caffeine citrate: Discard unused portion.
	Caffeine base: IV – discard unused portion. Oral solution – store at room temperature.
Storage	Store below 30 °C
Excipients	Cafnea Injection and oral solution contain citric acid monohydrate and sodium citrate. The
	injection contains no preservatives.
	Auspman caffeine oral solution – glycerol, potassium sorbate, hydrochloric acid.
Special comments	Half-life in neonates: 72–96 hours (range 40–230 hours decreasing with advancing corrected
	gestational age). [4, 5]
	Time to peak serum concentration: Within 30 minutes to 2 hours in oral administration.
	Caffeine may not reach subtherapeutic levels until 11 to 12 days post cessation [6].
Evidence	Weaning from mechanical ventilation.
	In a subgroup analysis of the CAP 2016 trial [7], use of caffeine citrate (20mg/kg loading dose
	followed by 5 mg/kg maintenance) versus placebo for extubation of preterm infants born
	500 to 1250g found a reduction in PDA ligation (717 infants; RR 0.32 [95%Cl 0.20, 0.52]),
	PMA at last oxygen therapy (666 infants; MD -1.5 [-2.25, -0.75] days), PMA at last
	endotracheal tube (668 infants; MD -0.90 [-1.42, -0.38] weeks), PMA at last positive pressure
	ventilation (667 infants; MD -1.10 [-1.64, -0.56] weeks) and bronchopulmonary dysplasia at

term age (672 infants; RR 0.81 [0.70, 0.93]). Caffeine was associated with a reduction
cerebral palsy (644 infants; RR 0.54 [0.32, 0.92]) and death or major disability by 18-21
months (676 infants; RR 0.85 [0.73, 0.99]) [8]. At age 11 years the caffeine-treated children
had better respiratory function and reduced risk of motor impairment [9].
Prevention of apnea in preterm infants
In two trials including 104 preterm infants comparing caffeine versus placebo for prevention
of apnea reported no significant difference in apnoea, bradycardia, hypoxaemic episodes,
use of IPPV or side effects. Meta-analysis found no significant difference in use of IPPV or
tachycardia. [10] In a subgroup analysis of the CAP 2006 trial [7], infants treated with
prophylactic caffeine had a reduction in PDA (453 infants; RR 0.41, 95%Cl 0.20, 0.84) and
PMA at last positive pressure ventilation (432 infants; MD -1.00, 95%CI -1.62, -0.38 weeks].
There was no reported difference in PMA at last oxygen therapy, PMA at last endotracheal
tube, bronchopulmonary dysplasia (437 infants; RR 0.83, 95%Cl 0.67, 1.05), cognitive delay
(396 infants; RR 1.08, 95%CI 0.83, 1.40), cerebral palsy (415 infants; RR 1.03, 95%CI 0.43,
2.49) or death or major disability (423 infants; RR 1.00, 95%CI 0.80, 1.24).
Higher versus lower dosage caffeine
Several systematic reviews [1, 11, 12] have assessed the effects of higher (loading dose >20
mg/kg and maintenance >10 mg/kg/day) versus lower dose caffeine citrate in preterm
infants. Loading and maintenance caffeine citrate doses varied in trials between 20 and 80
•
mg/kg/day and 3 and 20 mg/kg/day, respectively.[1] In the largest review, 13 RCTs reporting
1515 infants compared low-dose 5-10 mg/kg daily versus high-dose group (10-20 mg/kg
daily) caffeine citrate. The high-dose group had a lower extubation failure rate (RR: 0.5,
95%CI: 0.35 to 0.71, P=0.0001), frequency of apnea (MD: -1.55, 95%CI: -2.72 to -0.39,
P=0.009), apnea duration (MD: -4.85, 95%CI: -8.29 to -1.40, P=0.006), and incidence of
bronchopulmonary dysplasia (RR: 0.79, 95%CI: 0.68 to 0.91, P=0.002), but higher incidence of
tachycardia (RR: 2.02, 5%CI: 1.30 to 3.12, P=0.002). There were no significant group
differences in other adverse events including in-hospital death (P>0.05). [12] Higher
maintenance doses of caffeine citrate was more effective and safer than low maintenance
doses for treatment of premature apnea, despite a higher incidence of tachycardia. [LOE I
GOR C]
-
Prevention of post-operative apnoea.
Prophylactic caffeine for prevention of postoperative apnea following general anaesthesia in
preterm infants reduced postoperative apnoea/bradycardia (3 trials, 78 infants; RR 0.09
[0.02, 0.34] and postoperative oxygen desaturations (2 trials, 58 infants; RR 0.13 [0.03,
0.63].[13] Caffeine can be used to prevent postoperative apnea/bradycardia and episodes of
oxygen desaturation in preterm infants at risk [14] undergoing general anaesthesia for
surgery. [LOE I GOR B]
Safety
Systematic review of RCTs largely report caffeine to be safe and well tolerated in preterm
infants with few side effects and improved clinical outcomes [15-17]. Caffeine has been
reported to have fewer side effects including tachycardia than other methylxanthines [18].
Early lower dose caffeine compared to placebo was no associated with significant differences
in tachycardia (3 trials, 156 infants; RR 4.0, 95%Cl0.48, 33.5), bradycardia (2 trials, 102
infants; RR 0.36, 95%Cl 0.01, 12.85) or hypoxaemia (2 trials, 102 infants: RR 0.59, 95%Cl
2.02)[15].
Systematic reviews of higher versus lower dose caffeine also report higher dose caffeine was
more effective than lower dose caffeine at reducing extubation failure [1, 11, 12] and apnea
[1, 12], and may reduce the rate of BPD [12]. Higher dose caffeine is associated with higher
incidence of tachycardia (RR: 2.02, 5%CI: 1.30 to 3.12, P=0.002) [12]. Despite the increased
incidence of tachycardia, growth was not adversely affected in infants in the CAP trial
assessed at 18 to 24 months [8]. A trial of caffeine versus aminophylline reported similar
growth parameters at 18 to 24 months [19].
Although higher maintenance doses of up to 20 mg/kg/day may be even more effective]
[11], it is recommended [20] this needs further testing in randomised trials as higher doses

	1
	[80 mg/kg loading dose) were reported in a clinical trial to be associated with increased risk of cerebellar haemorrhage, hypertonicity and possibly seizure burden [21, 22], a concern not completely addressed by the reporting of a retrospective cohort which did not find an association [23, 24]. Pharmacokinetics and pharmacodynamics Caffeine has a long elimination half-life in preterm infants of 72–96 hours (range 40–230 hours) [4, 5], necessitating a loading dose to rapidly achieve therapeutic concentrations and allowing for once-daily dosing. In contrast, the half-life of caffeine in adults is 4–5 hours. Caffeine is metabolized in the liver by cytochrome P450 1A2 before rapid renal elimination of metabolites. This pathway is limited in preterm infants because of immaturity of hepatic enzyme system, therefore, most of a caffeine dose is eliminated unchanged in infancy, with 86 percent of the dose excreted in the urine at a slow rate. In contrast, only 1 percent of a caffeine dose is excreted unchanged by the kidneys in adults. The time to peak concentration from an oral dose is 30 minutes to two hours. The volume of distribution in infants is 0.8–0.9 L/kg.[3, 5] Loading doses of caffeine citrate produce relatively predictable serum concentrations. Caffeine citrate is 50 percent caffeine base; therefore, a loading dose of caffeine citrate 20 mg/kg produces a serum concentration of approximately 10 mg/L. Loading doses ranging from 6 to 60 mg/kg with daily maintenance doses ranging from 3 to 30 mg/kg examined in clinical trials and resulted in serum levels ranging from 6.7 to 59.9 mg/L. Standard caffeine dosing of a 20 mg/kg load followed by 5 mg/kg once daily results in serum concentrations of 5–20 mg/L. Supratherapeutic levels 20-60 mg/L offer potential increased therapeutic effect, whereas levels >60 mg/L are considered the toxic range.[3] Following cessation of caffeine at a mean postmenstrual age of 35 weeks, caffeine levels decreased from 13.3 ± 3.8 to 4.3 ± 2 mg/L (n = 50) at 24 and 168 hours respectivel
	64% of the infants had pathologic apnea. Caffeine may not reach subtherapeutic levels until
	11–12 days post cessation [6].
Practice points	 European Consensus Guidelines on the Management of Respiratory Distress Syndrome: Caffeine should be used to facilitate weaning from MV (High quality; Strong recommendation for using intervention). Early caffeine should be considered for babies at high risk of needing MV such as those on non-invasive respiratory support (Low quality; Strong recommendation for using intervention). [20] AAP Committee on fetus and newborn: Caffeine citrate is a safe and effective treatment of apnea of prematurity when administered at a 20-mg/kg loading dose and 5 to 10 mg/kg per day maintenance. Monitoring routine serum caffeine levels usually is not contributory to management. A trial off caffeine may be considered when an infant has been free of clinically significant apnea/bradycardia events off positive pressure for 5 to 7 days or at 33 to 34 weeks' PMA, whichever comes first. [2] However, caffeine may not reach subtherapeutic levels until 11-12 days post-cessation [6].
	Caffeine as a primary neuroprotectice agent for preterm infants: By definition, neuroprotection is an effect that may result in salvage, recovery or regeneration of the nervous system, its cells, structure and function.[25] Routine use of caffeine as a neuroprotective agent in preterm infants (non-ventilated with no history of apneas) has not been proven.
References	 Brattstrom P, Russo C, Ley D, Bruschettini M. High-versus low-dose caffeine in preterm infants: a systematic review and meta-analysis. Acta Paediatrica, International Journal of Paediatrics. 2019;108:401-10. Eichenwald EC, Committee on F, Newborn AAoP. Apnea of Prematurity. Pediatrics. 2016;137. Rostas SE, McPherson C. Caffeine Therapy in Preterm Infants: The Dose (and Timing) Make the Medicine. Neonatal network : NN. 2019;38:365-74. Charles BG, Townsend SR, Steer PA, Flenady VJ, Gray PH, Shearman A. Caffeine citrate
	treatment for extremely premature infants with apnea: population pharmacokinetics,

absolute bioavailability, and implications for therapeutic drug monitoring. Ther Drug Monit. 2008;30:709-16.
5. Lee TC, Charles B, Steer P, Flenady V, Shearman A. Population pharmacokinetics of
intravenous caffeine in neonates with apnea of prematurity. Clin Pharmacol Ther.
1997;61:628-40.
6. Doyle J, Davidson D, Katz S, Varela M, Demeglio D, DeCristofaro J. Apnea of prematurity
and caffeine pharmacokinetics: Potential impact on hospital discharge. Journal of
Perinatology. 2016;36:141-4.
7. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A, Tin W.
Caffeine therapy for apnea of prematurity. The New England journal of medicine.
2006;354:2112-21.
8. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A, Tin W.
Long-term effects of caffeine therapy for apnea of prematurity. The New England journal of
medicine. 2007;357:1893-902.
9. Murner-Lavanchy IM, Doyle LW, Schmidt B, Roberts RS, Asztalos EV, Costantini L, et al.
Neurobehavioral outcomes 11 years after neonatal caffeine therapy for apnea of
prematurity. Pediatrics. 2018;141 (5) (no pagination).
10. HendersonSmart DJ, De Paoli AG. Prophylactic methylxanthine for prevention of apnoea
in preterm infants. Cochrane Database of Systematic Reviews. 2013.
11. Vliegenthart R, Miedema M, Hutten GJ, van Kaam AH, Onland W. High versus standard
dose caffeine for apnoea: a systematic review. Arch Dis Child Fetal Neonatal Ed.
2018;103:F523-F9.
12. Chen J, Jin L, Chen X. Efficacy and safety of different maintenance doses of caffeine
citrate for treatment of apnea in premature infants: A systematic review and meta-analysis.
BioMed Research International. 2018;2018 (no pagination).
13. Henderson-Smart DJ, Steer P. Prophylactic caffeine to prevent postoperative apnea
following general anesthesia in preterm infants. Cochrane database of systematic reviews.
2001:CD000048.
14. Massoud M, Kuhlmann AYR, Van Dijk M, Staals LM, Wijnen RMH, Van Rosmalen J, Sloots
CEJ, Keyzer-Dekker CMG. Does the incidence of postoperative complications after inguinal
hernia repair justify hospital admission in prematurely and term born infants? Anesthesia
and Analgesia. 2019;128:525-32.
15. Kua KP, Lee SWH. Systematic review and meta-analysis of clinical outcomes of early
caffeine therapy in preterm neonates. British Journal of Clinical Pharmacology. 2017;83:180-
91.
16. Park HW, Lim G, Chung SH, Chung S, Kim KS, Kim SN. Early Caffeine Use in Very Low Birth
Weight Infants and Neonatal Outcomes: A Systematic Review and Meta-Analysis. Journal of
Korean medical science. 2015;30:1828-35.
17. HendersonSmart DJ, Davis PG. Prophylactic methylxanthines for endotracheal extubation
in preterm infants. Cochrane Database of Systematic Reviews. 2013.
18. Henderson-Smart DJ, Davis PG. Prophylactic methylxanthines for endotracheal
extubation in preterm infants. Cochrane database of systematic reviews. 2010:CD000139.
19. Khurana S, Shivakumar M, Sujith Kumar Reddy GV, Jayashree P, Ramesh Bhat Y, Lewis
LES, Shashikala. Long-term neurodevelopment outcome of caffeine versus aminophylline
therapy for apnea of prematurity. Journal of Neonatal-Perinatal Medicine. 2017;10:355-62.
20. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, Plavka R, Roehr CC,
Saugstad OD, Simeoni U, Speer CP, Vento M, Visser GHA, Halliday HL. European Consensus
Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update.
Neonatology. 2019;115:432-50.
21. McPherson C, Neil JJ, Tjoeng TH, Pineda R, Inder TE. A pilot randomized trial of high-dose
caffeine therapy in preterm infants. Pediatr Res. 2015;78:198-204.
22. Vesoulis ZA, McPherson C, Neil JJ, Mathur AM, Inder TE. Early High-Dose Caffeine
Increases Seizure Burden in Extremely Preterm Neonates: A Preliminary Study. Journal of
Caffeine Research. 2016;6:101-7.

Caffeine Newborn use only

23. Firman B, Gray PH. High loading dose of caffeine citrate in preterm infants and the effects
on cranial ultrasound findings and neurological outcomes. Journal of Maternal-Fetal and
Neonatal Medicine. 2016;29 (Supplement 1):64-5.
24. Firman B, Molnar A, Gray PH. Early high-dose caffeine citrate for extremely preterm
infants: Neonatal and neurodevelopmental outcomes. Journal of Paediatrics and Child
Health. 2019;55:1451-7.
25. Vajda FJ. Neuroprotection and neurodegenerative disease. J Clin Neurosci. 2002;9:4-8.

VERSION/NUMBER	DATE
Original	9/11/2015
Revised	
2.0	15/02/2016
Current 3.0	30/01/2020
REVIEW	30/01/2025

Authors Contribution

Original author/s	lan Callander
Current version	David Osborn, Srinivas Bolisetty
Evidence Review	Himanshu Popat, David Osborn
Nursing Review	Eszter Jozsa
Pharmacy Review	Jing Xiao, Michelle Jenkins, Cindy Chen, Carmen Burman
ANMF Group contributors	Nilkant Phad, Himanshu Popat, Jutta Van den Boom, John Sinn
Final editing and review of the original	lan Whyte
Electronic version	Cindy Chen, Ian Callander
Facilitator	Srinivas Bolisetty